Search results for "Smoluchowski coagulation equation"
showing 3 items of 3 documents
Three-body correlations and conditional forces in suspensions of active hard disks
2017
Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to th…
Quantitative interpretation of the red edge excitation (REE) effect of 9,9′-bianthryl in polyisobutene by band shape analysis of the temperature-depe…
1994
Optical fluorescence spectra of 9,9′-bianthryl (BA) in polyisobutene (PIB) were measured as a function of the excitation wavelength at various temperatures between 210 and 293 K. Irradiation at the red edge of the absorption spectra selectively excites distinct conformers with respect to the torsional angle. This leads to a strong dependence of the vibronic band shape of the fluorescence spectra on the excitation wavelength. The marked temperature dependence of the band shape may be attributed to the viscosity-dependent deceleration of the torsional relaxation of BA in the highly viscous polymer which prevents the excited state ensemble from reaching thermal equilibrium. The predominant bro…
Emergent pattern formation of active magnetic suspensions in an external field
2020
We study collective self-organization of weakly magnetic active suspensions in a uniform external field by analyzing a mesoscopic continuum model that we have recently developed. Our model is based on a Smoluchowski equation for a particle probability density function in an alignment field coupled to a mean-field description of the flow arising from the activity and the alignment torque. Performing linear stability analysis of the Smoluchowski equation and the resulting orientational moment equations combined with non-linear 3D simulations, we provide a comprehensive picture of instability patterns as a function of strengths of activity and magnetic field. For sufficiently high activity and…